
Фармацевтическая этика
Становление этики и деонтологии...
Современная медицинская деонтология, рассматривая проблемы долга, деятельности медицинских и фармацевтических работников, исходит из специфики их труда.

Измерение и коррекция ослабления излучения
Поток аннигиляционных фотонов, проходя через различные ткани тела пациента, ослабляется при взаимодействии с ними вследствие эффектов комптоновского рассеяния и фотоэлектрического поглощения. При таком ослаблении механизм комптоновского рассеяния преобладает при энергиях фотонов в диапазоне 200-1000 кэВ, а фотоэлектрическое поглощение доминирует при энергиях квантов ниже 30 кэВ и 50 кэВ для мягких тканей и костей соответственно. В результате вероятность детектирования совпадений снижается и, например, для случая тканей двух видов может быть определена по формуле:
(16)
где:μ1 и μ2 - линейные коэффициенты ослабления фотонов в первой и второй тканях соответственно;1+d2=Dn - толщина тела пациента на линии проецирования.
В редком на практике случае проведения ПЭТ в однородной ткани для определения Р достаточно знать лишь величину Dn во всех направлениях и использовать значение μ=μводы=0,096 см-1 для фотонов с энергией 511 кэВ. Линейный коэффициент ослабления зависит от энергии фотона и эффективного атомного номера Z исследуемых тканей.
В реальности приходится иметь дело с неоднородным ослаблением излучения (например, при исследованиях органов грудной клетки). Поэтому для определения величины Р проводят трансмиссионное сканирование пациента с использованием вращающегося вокруг пациента одного или нескольких источников - позитронного излучателя 68Ge с энергией 511 кэВ, либо γ-излучателя 137Cs с энергией 662 кэВ. В первом случае прошедшее через тело пациента излучение регистрируется в режиме совпадений, во втором - в режиме однофотонного детектирования (рис. 7 а, б). Выполняя трансмиссионное сканирование без пациента ("пустой" скан) и при его помещении в поле чувствительности сканера, можно определить ослабление излучения вдоль каждой детектируемой линии фотонной аннигиляции и восстановить точную карту ослабления излучения. Последующая коррекция ослабления эмиссионных ПЭТ-данных заключается в компьютерной обработке данных и расчете величины P-1, а также в умножении полученной величины на соответствующее значение эмиссионной синограммы распределения активности РФП.
В случае использования источника l37Cs вместо 68Ge перед выполнением такого умножения дополнительно проводят реконструкцию распределения ослабления (μ-карты) и умножение на поправочный коэффициент, связанный с несоответствием энергий γ-квантов источника и аннигиляционных фотонов. После этого выполняют прямое проецирование для получения набора соизмеримых проекций.
Рис. 7. Иллюстрация трех методов измерения фактора ослабления излучения с использованием разных источников
Коррекция ослабления излучения описанным методом позволяет учесть радиальную неоднородность распределения активности РФП и получить изображения радиационно-плотных соседних тканей, необходимые для установления локализации органов. При этом существенно повышается контрастность изображения и отношение опухоль/фон. Без такой коррекции ПЭТ-изображения могут быть использованы лишь для неколичественных исследований. Для решения задачи повышения качества ПЭТ-изображения разработаны разные методы измерения ослабления излучения:
▪ проведение трансмиссионного скана после инъекции РФП одновременно с эмиссионным сканом, либо сразу после него. Такой метод эффективен для точной подгонки друг к другу данных обоих сканов, но не решает задачи снижения статистического шума от трансмиссионного скана;